MOTION OF A SMALL SPHERE IN A NONHOMOGENEOUS
FLOW OF AN INCOMPRESSIBLE LIQUID
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We consider the motion of a small sphere in an arbitrary potential flow of an ideal liquid.
For the general case we obtain an Integral of the equations of motion and a particular solu-
tion. We find flows in which the force acting on the sphere is central. We also obtain exact
solutions of the equations of motion of the sphere for the cases of stationary flows around a
cylinder and around a body of revolution when the forces are noncentral. N. E. Zhukovskii
[1] calculated the force acting on a fixed sphere in an arbitrary nonstationary flow. Kelvin
[2] obtained the equations of motion of a sphere in a stationary flow of a liquid circulating
through a hole in a solid. A formula for the force ¥, acting on a fixed small body of volume
V in a stationary flow with speed v, was obtained by Taylor [3]:

F = (3T, / ov)yv + Yy Vys®

Here T, is the kinetic energy of an unbounded liquid in which a body moves with velocity v.
This problem was solved in [3] through a direct integration of the pressure forces over the
surface of the body in a flow defined by multipoles of the first and second orders at infinity.

1. Basic Equations. In [4, 5] a derivation is given of the equations of motion of a gas bubble and of a
body in an arbitrary potential flow of an ideal incompressible liquid on the basis of Lagrange's equations;
in these references expressions are obtained for the additive component of the Lagrange function corre-
sponding to the motion of the liquid.

The Lagrange function L for the sphere —liquid system includes, besides the difference of the kinetic
energy in the relative motion and the product of the volume of the body by the pressure in the flow [4, 5],
also the kinetic energy of the sphere of radius R; thus we have

L ="1sxR [p (q" — Vv)* — 4pol +¥smR%'q*

Here p and p' are, respectively, the densities of the liquid and the sphere; v and p; are, respectively,
the speed and pressure of the undisturbed flow at the sphere center whose coordinates are given by q. In
the case of a solid sphere the expression for L can be simplified by adding in the total derivative with re-
spect to the time

EYCYSORE YL S0%

and taking into account the Cauchy—Lagrange integral for the undisturbed flow with potential &,; thus
L =R [(p + 20°) g — 6p,]
The function L yields the following equations of motion:
(0 + 20) g = —38pe/ga (@ =1, 2, 3) 1.1

These equations can also be obtained by starting from the expression for the force acting on the
sphere moving in a nonhomogeneous flow [6].
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In a stationary flow of an ideal liquid the equations (1.1) assume the form
mg, = ;3 8*/9g. (m = (p + 2p")/3p) (1.2)

Equations (1.2) correspond to the motion of a particle with mass m in a force field with potential
1/2 v’. It follows from Egs. (1.1) that the acceleration of the sphere is proportional to the acceleration
oftheliquid. For p'=0 (a bubble) the sphere acceleration is equal to three times the acceleration of the
liguid. When p' =p the accelerations of the body and the liquid are the same.

Equation (1.2) has the following particular solution:
ga=0v/Vm

which may be verified by a substitution. This solution shows that for some initial conditions the particles
can move along stream lines of the liguid.

The equations of motion (1.2) for a small sphere have a first integral analogous to the energy integral
in the dynamics of a particle:

mq? — v? = const (1.3)
For the two-dimensional problem we can find an exact solution if we know yet another first integral.
The case of central forces is particularly simple.

2. Flows in Which the Force Is a Central Force. We can prove the following theorem for two-dimen-
sional flow with the complex potential W,

Theorem. The force acting on a small sphere in a two-dimensional flow is a central force if and only
if the derivative of the complex potential has the form dw/dz =cz?, where c is an arbitrary complex num-
ber and A is real.

Proof. It follows from Eq. (1.2) that the force is central if
W [ ds| = f(]2])
where f is a function of a real argument.

Consequently, the real part of the analytic function Ln (dW/dz) is a harmonic function depending only
on [z|. The general form of such a harmonic function is A 1In |z| + c. Hence

dWw | dz = ez*

As an example of motion with a central force we cite the case of motion at a vortex source whose
complex potential is equal to ¢ Ln z. Flows interior to a corner (W=cz7‘ » A > 1/2) belong to this class.

For A =2 we obtain a flow about a cylindrical body in the neighborhood of a critical point in the flow.
In the three-dimensional case motion in a source field corresponds to central forces.

In all these cases it is not difficult to write down the exact solutions of the equations (1.2), at least in
terms of quadratures, by using the momentum integral instead of the integral (1.3). The integration of Egs.
(1.2) becomes more complicated if the forces are noncentral.

3. Some Exact Solutions in the Case of Noncentral Forces. We consider a small sphere situated in
the flow past a circular cylinder. Let the speed of the flow at infinity be equal to one and let the cylinder
radius also be equal to one; let r be the distance to the axis of the cylinder and let 6 be the angle reckoned
from the direction of the flow velocity at infinity. The liquid velocity components are then given by

v,=c0s0 (1 —r2), vo=—sind (1 +r?

#=14r*—2r2cos 20
The equation corresponding to Eq. (1.2) for the change in the moment of momentum is

d } 2 sin 20
W(mrze) = )

Changing over to a differentiation with respect to ¢ in the last equation, we can find r?6* as a func-
tion of 4.
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Thus, Eq. (1.2), for the case of a sphere in the flow around a cylinder, has the the two first integrals

m(r?4+r? —r4+2r2cos 20 =E
mrif? 4- 2cos 20 = H

The first equation coincides with Eq. (1.3). The resulting system of equations is equivalent to the
following:

mirt =1 — Ht + Eré
mri9t = H — 2 cos 20 @.1)

The solution of Eq. (3.1) is expressed in terms of elliptic integrals.

Let the particle move from infinity along with the flow; then E=m, H=mb?+2 (b is the distance to the
line, parallel to the flow velocity and passing through the center, when the sphere is situated at infinity).
Putting ¢ = 0 in the first part of Eq. (3,1), we can find the least distance r«that the sphere can approach the cyl~
inder axis for a given b:

2mryt = mb 4 2 + V i F2F — (3.2)

When m <1 (p' < p) the body does not reach the cylinder surface since r‘(2 > 1. It is possible for
the particles to come into contact with the cylinder if m > 1. Thus the possibility of the small spherical
particle being tangent to the cylinder is determined by the ratio of the particle density p' to the liquid den-
sity p. Particles which are denser than the liquid may touch the cylinder; if they are less dense, they do
not touch the cylinder,

The expression (3.2) enables us to calculate the capture cross section o for m > 1 (p* > p):
o==ab2=n(m—1)/m

Here b, is the largest limiting distance b for which the sphere is tangent to the cylinder surface. From
Eq. (3.1) it follows that the point § = §; on the cylinder at which tangency occurs for b=b, is determined from
the equation

£

V1+mde—2cos26= ViTn K( }}E)

Here K is the complete elliptic integral of the first kind.

In [7] numerical methods were used to obtain the trajectories of a bubble in the flow of a liquid past
a circular cylinder. The impossibility of precipitating the bubble onto the cylinder in the flow of an ideal
liquid was established. This is in agreement with our result obtained above. .

Suppose that the sphere moves in an axially symmetric flow, consisting of a uniform flow and a

source
v, =¢0s0 4+ r? vy = —sinh, =14 r¢ 4 2r2cos 0

This flow can be regarded as the flow over an unbounded body whose contour is given by the equation
r=1/sin(8/2) (3.3)

In this case the first integrals of equations (1.5) are of the following form;:

mrirt =1 — Hr? 4 Ert (3.4)
mrt9’? = H | 2 cos 0 '

The trajectories of the motion, obtained from equations (3.4), can be written in terms of elliptic
integrals. For spherical bodies, moving from infinity along with the flow of the liquid, E=m, H=mb?+2.
For r, we obtain the same expression (3.2) from the first of the equations (3.4) that we did in the case of
cylinder. From the relations (3.2) and (3.3) we obtain an estimate for the smallest distance r from the
source for which it is possible to have tangency of the sphere and the body of revolution with Eq. (3.3) as
generator. In particular, for a spherical bubble r >3 + V6 ~ 5.45.
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If we reverse the liquid flow in question, we have the problem of drawing the particles into the flow.
In this case equations (3.4) assume the following form:

mrirt =1 — (mb? — 2) r* + mrd

mrig'? = mb? — 2 + 2cos 8 (3-5)
We obtain an expression for r, from the first part of Eq. (3.5):
2mryd = mb? — 2 + Y (mb* — 2)° — 4m (3.6)

Generally speaking, there exists yet aﬁother value of r. corresponding to the second smaller root
of the quadratic equation. However in integrating Eq. (3.5) from r= « this second value is not attainable.

From the relation (3.6) it follows that the reverse flow point r  exists providing that
B>2+2Vm)/m (3.7)

If the limiting distance satisfies the condition (3.7), then a globule, having attained the minimum dis-
tance (3.6), will go off to infinity. But if the condition (3.7) is not satisfied, the globule will then be drawn
into the stream.

Thus, the inequality (3.7) determines the smallest limiting distance b, for which the spherical particles
are not drawn into the flow. The distance r, to which a particle approaches the stream is determined from
Eq. (3.6).

b:=@2+2YVmy/mry=1/Vm (3.8)

For b =b, the first of Eq. (3.5) integrates into elementary functions. Using the relations (3.8), we can
calculate the number of particles N falling per unit time into a flow of capacity Q if the number n of parti-
cles per unit volume is known; thus

N=anQ@2+2yYm)/m
It is evident from this relation that the quantity N does not depend on the speed of the uniform flow.
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